A Poisson-Based Approximation Algorithm for Stochastic Bin Packing of Bernoulli Items

Tomasz Kanas, Krzysztof Rzadca

- Assignment
- of tasks (VMs/Containers)
- to machines
- resource (CPU, RAM) constraints
- minimize number of machines

Bin Packing:

- \rightarrow item of size s
- \rightarrow bin of capacity 1
- \rightarrow sum of sizes in a bin ≤ 1
- \rightarrow minimize #bins

- Scheduling in the cloud \implies Bin packing
- Unknown task resource requirements \implies Random variable
- Resource usage changes in time \implies Overcommitment

Stochastic Bin Packing

- Item size: random variable X_i
- Bounded probability of overload (SLO): $\mathbb{P}(\sum_{i \in B} X_i > 1) \le \alpha$

何 ト イヨ ト イヨ ト

Item Distribution

Central Limit Theorem \implies Bin distribution tends to Gaussian.

But the convergence is too slow in terms of the number of items! [Janus, Rzadca, 2017]

Centers of clusters of Google Trace task distributions. [Janus, Rzadca, 2017]

Centers of clusters of Google Trace task distributions. [Janus, Rzadca, 2017]

Centers of clusters of Google Trace task distributions. [Janus, Rzadca, 2017]

[Janus, Rzadca, 2017]

▶ ∢ ⊒ ▶

Contribution

- **Refined Poisson Approximation Packing (RPAP)**: an online algorithm for bin packing of Bernoulli variables
- Closed-form approximation ratio:

$$2\frac{1+\alpha}{1-\alpha}\left(1+\frac{2}{Q^{-1}(2,1-\alpha)}\right)$$

• RPAPC: RPAP modification that beats First Fit in simulations on datasets with small items.

Item: size *s* with probability *p* size 0 with probability 1 - p

Types of items:

- Confident: *p* large → round to 1 Pack by: size s
- Minor: s small → variance (s²p) small
 Pack by: expected value sp
- Standard: More complicated...

Pack each type to separate bins.

Algorithm idea

Sum of independent Bernoulli \rightarrow Poisson

- Round items up to Poisson variables.
- Poi(a) + Poi(b) = Poi(a + b)
 classic Bin Packing!

How to round up random variables?

Stochastic dominance:

$$A \ge_1 B \iff \forall_x \mathbb{P}(A \le x) \le \mathbb{P}(B \le x)$$

If the probability of overflow is small, then the expected value is also small!

- If $X_i \sim \text{Ber}(p_i, s_i)$
- are independent,
- $s_i \leq 1$
- and their sum $B = \sum_i X_i$ satisfies $\mathbb{P}(B > 1) \le \alpha$
- then $\mathbb{E}(B) \leq \frac{1+\alpha}{1-\alpha}$.

If the probability of overflow is small, then the expected value is also small!

- If $X_i \sim \text{Ber}(p_i, s_i)$
- are independent,
- $s_i \leq 1$
- and their sum $B = \sum_i X_i$ satisfies $\mathbb{P}(B > 1) \le \alpha$
- then $\mathbb{E}(B) \leq \frac{1+\alpha}{1-\alpha}$.

If the probability of overflow is small, then the expected value is also small!

- If $X_i \sim \text{Ber}(p_i, s_i)$
- are independent,
- $s_i \leq 1$
- and their sum $B = \sum_i X_i$ satisfies $\mathbb{P}(B > 1) \le \alpha$
- then $\mathbb{E}(B) \leq \frac{1+\alpha}{1-\alpha}$.

If the probability of overflow is small, then the expected value is also small!

- If $X_i \sim \text{Ber}(p_i, s_i)$
- are independent,
- $s_i \leq 1$
- and their sum $B = \sum_i X_i$ satisfies $\mathbb{P}(B > 1) \le \alpha$
- then $\mathbb{E}(B) \leq \frac{1+\alpha}{1-\alpha}$.

If the probability of overflow is small, then the expected value is also small!

- If $X_i \sim \text{Ber}(p_i, s_i)$
- are independent,
- $s_i \leq 1$
- and their sum $B = \sum_i X_i$ satisfies $\mathbb{P}(B > 1) \le \alpha$
- then $\mathbb{E}(B) \leq \frac{1+\alpha}{1-\alpha}$.

If the probability of overflow is small, then the expected value is also small!

- If $X_i \sim \text{Ber}(p_i, s_i)$
- are independent,
- $s_i \leq 1$
- and their sum $B = \sum_i X_i$ satisfies $\mathbb{P}(B > 1) \le \alpha$
- then $\mathbb{E}(B) \leq \frac{1+\alpha}{1-\alpha}$.

Simulation methodology

- Synthetic datasets
 - Sampled from Normal distribution
 - Different maximal item sizes (s_{max})
- Google trace derived dataset
 - Empirical task CPU usage distribution
 - Fitted Bernoulli distribution (by minimizing L₁ norm of CDF difference)
- Normalized results by average item expected value

Google trace dataset statistics:

RPAP Combined (RPAPC):

- Try to pack item using **RPAP**
- If it doesn't fit into a bin
- Check if it would fit in FF

Notice: It will never open a bin if RPAP doesn't.

Approximation guarantees hold!

RPAPC slightly outperforms First Fit Rounded on datasets with small items

While using fewer bins than First Fit Rounded, RPAPC also achieves lower overflow probabilities

More experiments

(*) * 문 * * 문 *

RPAP is an $2\frac{1+\alpha}{1-\alpha}\left(1+\frac{2}{Q^{-1}(2,1-\alpha)}\right)$ approximation algorithm for Stochastic Bin Packing with Bernoulli items.

- Probabilistic models for resource management are worth considering.
- Probabilistic models may lead to practical algorithms.
- Combining the theoretical approach with simple heuristics decreases risk and keeps the performance.

Thank you for your attention! Any questions?

Contact me: t.kanas@uw.edu.pl

伺 ト イ ヨ ト イ ヨ ト