
Scheduling Tasks with Precedences on Edge-Cloud
Platforms Partially Powered with Renewable Energy

Clément Mommessin
Remous-Aris Koutsiamanis Jean-Marc Menaud

IMT Atlantique, Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR
6004, F-44000 Nantes, France

{clement.mommessin, remous-aris.koutsiamanis, jean-marc.menaud}@imt-atlantique.fr

May 16, 2024

General Model: Platform

Network: a complete
graph with latency value
for each edge

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

Cloud site

Edge site 1
..........
..........

..........

..........

Edge site 2 Edge site 3

Network connections

1 / 20

General Model: Platform

Renewable sites:
prediction of power production
assumed to be constant

For each computing site:
 #CPUs
 #memory units
 speed (work/second)
 Pstatic
 Pdynamic (per CPU)

Network: a complete
graph with latency value
for each edge

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

Cloud site

Edge site 1
..........
..........

..........

..........

Edge site 2 Edge site 3

Network connections
Renewable electricity
Brown electricity

1 / 20

General Model: Jobs and Tasks

Jobs are submitted over time, their execution must start immediately.
Tasks are allocated on reservations that can be changed until they start.
Executing tasks cannot be preempted/migrated.

1

2 3

4

2

3 4

1

1

2

3

For each job:
 DAG of tasks
 submission time
 deadline

For each task:
 #CPUs
 #memory
 #work to perform

Job

Task
Predecessor

Successors

2 / 20

Additional Constraints: Labels

Labels are associated to tasks and computing sites for affinity filtering
(à la Kubernetes).
→ A task can only be placed on a computing site containing its labels.

in_Paris

in_Paris
has_disk

in_Aussois

in_Paris

has_disk

in_Aussois

time

T1 T2

T3

Edge1

Edge2

Edge3

3 / 20

Additional Constraints: Labels

Labels are associated to tasks and computing sites for affinity filtering
(à la Kubernetes).
→ A task can only be placed on a computing site containing its labels.

in_Paris

in_Paris
has_disk

in_Aussois

in_Paris

has_disk

in_Aussois

time

T1 T2

T3

Edge1

Edge2

Edge3 T2

T1

T3

3 / 20

Additional Constraints: Immediate Starting Times
A task with no predecessor must start immediately at the job submission.
Communications from a task to its succesor(s) must start immediately
at the completion of the task.
A successor task must start its execution immediately after all
communications have finished.

time

T1 T2

T3

Edge1

Edge2

Edge3 T2

T1

T3

communication

4 / 20

Additional Constraints: Immediate Starting Times
A task with no predecessor must start immediately at the job submission.
Communications from a task to its succesor(s) must start immediately
at the completion of the task.
A successor task must start its execution immediately after all
communications have finished.

→ A task may start before its actual execution (holding the resources).

time

T1 T2

T3

Edge1

Edge2

Edge3 T2

T1

T3

task anticipated startcommunication

4 / 20

Green Scheduling at the Edge

Problem recap’
▶ Computing sites composed of one server with limited resources
▶ Jobs with submission times, deadlines, DAG of tasks
▶ Renewable energy sources + the regular grid (brown energy)
▶ Labels on tasks and servers for filtering (à la Kubernetes)
▶ Dynamic setting with a time window of 15 minutes

Decisions to take
▶ Determine the allocation of tasks for each job (or reject the whole job)
▶ Determine the repartition of renewable/brown power drawn by each

computing site for each time interval
The tasks start/finish times are fixed by the allocation decisions

Objective: Minimize the total brown energy consumption
and the number of jobs rejected

5 / 20

Some Formulae
Processing time of a task:

exec = task work
server speed

Communication time between two tasks executed on sites i and m:

comm =
{

latencyim if i ̸= m
0 if i = m

(We assume infinite bandwidth to avoid network sharing problems)

Power consumption of a computing site when u CPUs are used:

power =
{

Pstatic + u × Pdynamic if u > 0
0 if u = 0

6 / 20

Example: Schedule

Cloud
site

Edge
site

T1

T21

CPU used

CPU used

5

0

0

1 8

6

time

time

Solution 1

T1

T21

T22 T23

T24

7 / 20

Example: Schedule

Cloud
site

Edge
site

T1

T21

T22

T23

CPU used

CPU used

5

0

0

1 8

52

6

4

8

time

time

Solution 1

T1

T21

T22 T23

T24

7 / 20

Example: Schedule

Cloud
site

Edge
site

T1

T21

T22

T23

T24

CPU used

CPU used

5

0

0

1 8

52

6 7

6

4

8

time

time

Solution 1

T1

T21

T22 T23

T24

7 / 20

Example: Schedule

Cloud
site

Edge
site

T1

T21

T22

T23

T24

CPU used

CPU used

5

0

0

1 8

52

6 7

6

4

8

time

time

Solution 1

Cloud
site

Edge
site

T1

T21

CPU used

CPU used

0

0

1

4

5

time

time

Solution 2
7 / 20

Example: Schedule

Cloud
site

Edge
site

T1

T21

T22

T23

T24

CPU used

CPU used

5

0

0

1 8

52

6 7

6

4

8

time

time

Solution 1

Cloud
site

Edge
site

T1

T21

T22

T23

T24

CPU used

CPU used

4

0

0

1

4

7 8

8

5

time

time

Solution 2
7 / 20

Example: Energy Consumption

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

4

7

300

240

 65

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

52

6 7

420

190
165

Solution 1 Solution 2
8 / 20

Example: Energy Consumption

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

52

6 7

420

190

240

165

Brown
energy
1260 J

Renewable
 energy
 1370 J

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

4

7

300

240

 65

Brown
energy
1200 J

Renewable
 energy
 1570 J

Solution 1 Solution 2
8 / 20

Example: Energy Consumption

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

52

6 7

420

190

120

165

Brown
energy
1260 J

Renewable
 energy
 960 J

Brown energy 410 J

Total brown
1670 J Cloud

site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

4

7

300

120

 65

Brown
energy
1200 J

Brown
energy
720 J

Renewable
 energy
 850 J

Total brown
1920 J

Solution 1 Solution 2
8 / 20

Solving the Problem

So how to actually solve the problem?

▶ First try with Constraint Programming

▶ Second try using ’Classical’ Scheduling Algorithms

9 / 20

First Try: with Constraint Programming

MiniZinc
An open-source constraint modelling language which can be used in
conjunction with multiple back-end solvers (Gecode, OR-Tools, etc.).

Algorithm: Upon submission of a job, instanciate a MiniZinc model and
solve it to schedule all job tasks, given the current state of the platform.

Current MiniZinc models:
▶ Exact model: Optimal objective value (additionnal brown energy

consumed) but slow to solve (several minutes)
▶ Approximate model: Each task consumes a fraction of the Pstatic

→ Approximate objective value but fast to solve (less than a second)

10 / 20

Second Try: using ’Classical’ Scheduling Algorithms

Develop greedy algorithms and their variants:

▶ Greedy algorithms
▶ Local search and exhaustive search variants
▶ (Metaheuristics)

11 / 20

Definitions

Rank (à la HEFT)
The rank of a task denotes its average critical path to the last finishing
task of the job. For a task k:

rankk = execk + max
p∈successors of k

{commkp + rankp}

→ Used to order tasks

Candidate Locations
Define the possible placements of a task
▶ the allocation (the ’where’)
▶ the anticipated start time, real start time and finish time (the ’when’)
▶ some metrics (additional total/brown/renewable energy consumption)

The locations are feasible: they respect the resource demands and deadline
12 / 20

Example: Candidate Location

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

52

6 7

420

190

120

165

T2

T11

T12

T13

▶ Candidate 1: Cloud site
Start time: 5, finish time: 5.5
70J additional brown energy
(Pstatic + Pdynamic)

▶ Candidate 2: Edge site
Start time: 6, finish time: 7
25J additional brown energy
(Pdynamic only)

13 / 20

Example: Candidate Location

Candidate 1
T14

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

52

6 7

420

190

120

165

T2

T11

T12

T13

▶ Candidate 1: Cloud site
Start time: 5, finish time: 5.5
70J additional brown energy
(Pstatic + Pdynamic)

▶ Candidate 2: Edge site
Start time: 6, finish time: 7
25J additional brown energy
(Pdynamic only)

13 / 20

Example: Candidate Location

Candidate 1

Candidate 2
T14

T14

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

52

6 7

420

190

120

165

T2

T11

T12

T13
▶ Candidate 1: Cloud site

Start time: 5, finish time: 5.5
70J additional brown energy
(Pstatic + Pdynamic)

▶ Candidate 2: Edge site
Start time: 6, finish time: 7
25J additional brown energy
(Pdynamic only)

13 / 20

Algorithm: Greedy

Greedy Algorithm Skeleton
Upon job submission:

1 Sort its tasks by decreasing rank (follows the dependencies)
2 For each task:
3 Compute all feasible candidate locations
4 Place the task on the best location

If a task cannot be allocated (lack of free resource or deadline not met)
→ Reject the whole job

Selection policy for the best location:
▶ Smallest additionnal energy
▶ Smallest additionnal brown energy
▶ Some other combination (resource usage, energy, finish time)

14 / 20

Example: Greedy Algorithm

Candidate 1
(70J brown)

Candidate 2
(25J brown)

T14

T14

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

52

6 7

420

190

120

165

T2

T11

T12

T13

15 / 20

Example: Greedy Algorithm

T14

Cloud
site

Edge
site

Power used (W)

Power used (W)

0

0

1 8

52

6 7

420

190

120

165

T2

T11

T12

T13

Cloud
site

Edge
site

T2

T11

T12

T13

T14

CPU used

CPU used

5

0

0

1 8

52

6 7

6

4

8

Power usage CPU usage
15 / 20

Example: Greedy Algorithm

→ New job submission at time 3

One task, Edge only, 3 CPUs

No space for T3
▶ Reject the job

(Greedy algorithm)
▶ Try to rearrange the

schedule (Local Search)

T3

Cloud
site

Edge
site

T2

T11

T12

T13

T14

CPU used

CPU used

5

0

0

1 3 8

52

6 7

6

4

8

8

16 / 20

Local Search variant

Local Search procedure
1 Make a backup of the platform

state
2

3

4

Cloud
site

Edge
site

T2

T11

T12

T13

T14

CPU used

CPU used

5

0

0

1 3 8

52

6 7

6

4

8

8

17 / 20

Local Search variant

Local Search procedure
1 Make a backup of the platform

state
2 Remove all non-running tasks in

the “neighborhood” of the
problematic task

3

4

Neighborhood of the task:
From its earliest possible starting time
onwards.

Cloud
site

Edge
site

T2

T11

T12

T13

T14

CPU used

CPU used

5

0

0

1 3 8

52

6 7

6

4

8

8

17 / 20

Local Search variant

Local Search procedure
1 Make a backup of the platform

state
2 Remove all non-running tasks in

the “neighborhood” of the
problematic task

3 Schedule the problematic task
4

T3

Cloud
site

Edge
site

T2

T11

T12

T13

CPU used

CPU used

5

0

0

1 3 8

52

6 7

6

4

8

8

17 / 20

Local Search variant

Local Search procedure
1 Make a backup of the platform

state
2 Remove all non-running tasks in

the “neighborhood” of the
problematic task

3 Schedule the problematic task
4 (Try to) schedule all tasks in the

queue using a scheduling
procedure

T3

T14

Cloud
site

Edge
site

T2

T11

T12

T13

CPU used

CPU used

5

0

0

1 3 8

52

6 7

6

4

8

8

17 / 20

Local Search variants

Scheduling procedures
▶ Greedy: Simply apply the greedy algorithm.

▶ Greedy with LS: Perform greedy but apply the Local Search
procedure if necessary.

▶ Exhaustive search: Recursively try all candidate locations for all
tasks. Apply the best solution found.

→ If a task cannot be allocated, revert to backed up state and reject the
job of first problematic task.

18 / 20

Experimental Campaign

Not really started yet
(but algorithms are implemented)
▶ Try different types of platforms
▶ Try different collections of jobs

For that we need datasets
(maybe look at Azure ones?)

→ Do you have ideas of datasets?
Please come and talk to me

19 / 20

Conclusion

A classical scheduling problem with uncommon constraints:
▶ Renewable power sources
▶ Allocation filtering with labels
▶ Immediate starting times (no delay)

On-going and future work:
▶ Focus on the experimental part

▶ Continue the algorithm design/implementation with new ideas
▶ Design good search heuristics for the Constraint Programming models

20 / 20

Scheduling Tasks with Precedences on Edge-Cloud
Platforms Partially Powered with Renewable Energy

Clément Mommessin
Remous-Aris Koutsiamanis Jean-Marc Menaud

IMT Atlantique, Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR
6004, F-44000 Nantes, France

{clement.mommessin, remous-aris.koutsiamanis, jean-marc.menaud}@imt-atlantique.fr

May 16, 2024

New Local Search Example

T32

T11 T12

T31

T21

T22

T23

T24

time

now

Site 1

Site 2

Site 3

Site 4

Queue

1 / 1

New Local Search Example

T32

T11 T12

T31

T21

T22

T23

T24

time

Site 1

Site 2

Site 3

Site 4

Queue
now

1 / 1

New Local Search Example

T11 T12

T31

T21

T22

T23

T24

time

Site 1

Site 2

Site 3

Site 4

Queue
now

T32

1 / 1

New Local Search Example

T32

T11 T12

T31

T21

T22

T23

T24

time

now

Site 1

Site 2

Site 3

Site 4

Queue

1 / 1

New Local Search Example

T32

T11 T12

T31

T21

T22

T23

T24

time

now

Site 1

Site 2

Site 3

Site 4

Queue

1 / 1

New Local Search Example

T32

T11

T12

T31

T21

T22 T23 T24

time

now

Site 1

Site 2

Site 3

Site 4

Queue

1 / 1

New Local Search Example

T11

T31

T21

time

now

Site 1

Site 2

Site 3

Site 4

Queue

T32

T12 T22 T23 T24

1 / 1

New Local Search Example

T11

T31

T21

time

now

Site 1

Site 2

Site 3

Site 4

Queue

T32

T12

T22 T23 T24

1 / 1

New Local Search Example

T11

T31

T21

time

now

Site 1

Site 2

Site 3

Site 4

Queue

T32

T12

T22

T23 T24

1 / 1

New Local Search Example

T11

T31

T21

time

now

Site 1

Site 2

Site 3

Site 4

Queue

T32

T12

T22 T23

T24

1 / 1

New Local Search Example

T11

T31

T21

time

now

Site 1

Site 2

Site 3

Site 4

Queue

T32

T12

T22 T23

T24

1 / 1

	Appendix

